
CPS122 Lecture: Graphical User Interfaces and Event-Driven Programming

Last revised March 6, 2018
Objectives:

1. To introduce the notion of a “component” and some basic Swing components
(JLabel, JTextField, JTextArea, JButton, JComboBox)

2. To introduce the concept of Containers and layouts, including standard layout managers
3. To introduce NetBeans support for Free Design layout
4. To introduce use of event-driven programming with GUI widgets (including with

multiple event sources)
5. To introduce inner classes
6. To introduce menus

Materials:

1. Dr. Java to demonstrate individual operations
2. Demo programs: ComboBoxDemo, Component and LayoutDemo, JPanelDemo,

GUIEventsDemo, MultipleEvents1/2, MouseEvents, MenuOptionsDemo
3. Demo of ATM System on web
4. Projectable of structure of ATM GUI as Panels
5. NetBeans to demonstrate Free Design
6. Projectable of initComponents() method of Video Store GUI class

I. Introduction

A.Today we will begin looking at creating and using graphical user
interfaces (GUI’s) in a program. This is a large subject, but after this
series of lectures you should be able to create and use simple GUI’s.

1. For iteration 1 of the team project, the GUI has been provided for you -
you will just need to make some small additions for the "Return" and
“Renewal” use cases.

2. But for iterations 2 and 3, you will need to add to the GUI provided for you.

3. This series of lectures will involve a lot of technical details concerning
the Java libraries - which you will need to use both in lab and on your
team project. There are a couple of important abstract concepts that
you should also grasp from these lectures:

�1

a) The overall structure of a GUI toolkit - of which the Java structure
is just one, but all have some similar characteristics.

b) The notion of event-driven programming, which is a fundamental
concept both with GUIs and in embedded systems.

B. A GUI performs two major tasks:

1. It displays information (graphics, text, and controls) on the screen.

2. It responds to user actions such as typing or clicking the mouse button.

II. Introduction to Java GUIs

A.One of the distinctive features of Java is its built-in support for implementing
graphical user interfaces. This stands in contrast to the situation in some other
languages where one uses a separate GUI toolkit on top of the language.  
 
In Java, this is done through a portion of the standard Java library called the
abstract windowing toolkit (often referred to as awt) and another portion -
which builds on the awt - called Swing.

1. The classes comprising the awt reside in the package java.awt, and
those comprising Swing reside in the package javax.swing.

a) To use Swing in a program, one normally includes the statement  
 

import javax.swing.*;  
 

and might also need  
 

import java.awt.*;

b) In addition, it may be necessary to import one or more subpackages - e.g.  
 

import java.awt.event.*;  
 

(This package contains classes that are used for responding to user input.
GUI-related actions performed by the user - e.g. clicking the mouse

�2

button - result in the creation of special objects called events that the
program can respond to. Both awt and Swing make use of these classes.)

c) Alternately, one can use fully-qualified names for the relevant
classes - e.g.  
 

javax.swing.JButton okButton =  
new javax.swing.JButton("OK")  

2. The awt and Swing are quite large - consisting of 98 classes plus 16
interfaces in the awt package and over 100 classes plus 25 interfaces in
the Swing package in JDK 1.8, plus 11 subpackages of awt and 17 of
swing. each with additional classes. We will only give a first
introduction to them now, focussing on Swing (though we will also
discuss an awt subpackage that Swing also uses).

3. Many of the visible components that are part of the Swing package
have names that begin with capital J - e.g. JButtton, JLabel, etc.

a) The J stands for the fact that the component is implemented by
code written in Java.

b) In contrast, awt components typically use the “native” components
of the underlying platform.

c) Actually, it is not uncommon to find that there is a “non-J” awt
version of a component as well as a swing version - e.g. Button
(awt) vs JButton (swing), etc - but this is not always true. The J is
used even when there is no corresponding awt component.

d) One important rule is to never mix awt and swing visible
components in the same GUI! [However, swing makes some use
of awt classes like LayoutManagers, which are not themselves
visible. That’s ok and unavoidable].

�3

B. One of the fundamental classes in the swing package is the class
JComponent. This class is the root of a hierarchy of classes that represent
things that users can see in windows:

1. Subclasses representing individual GUI components - including five
we will briefly introduce

a) JLabel
b) JTextField
c) JTextArea
d) JButton
e) JComboBox  

 

The first of these is an output component - i.e. its only use is for
displaying information for the user. The remaining four are
primarily input components, though the second and third can also
be used for output.

2. Containers - components that can themselves hold other components,
and provide for physically arranging them through layout managers.

3. It is also possible to create one's own custom components - though this
is beyond ouir current discussion.

C. We will demonstrate the various components using Dr. Java.  
 

Setup - select Interactions pane, then type:  
 

import java.awt.*;  
import javax.swing.*;  
JFrame f = new JFrame();  
Container p = f.getContentPane();  
p.setLayout(new BoxLayout(p, BoxLayout.Y_AXIS));  
f.show();  

D.A JLabel is a component that displays text on the screen.

1. The text in a label cannot be edited by the user.

�4

2. A label is created by code like the following:  
 

JLabel prompt = new JLabel("Hello");  
 

Note that the constructor takes a parameter that specifies what the
JLabel is to display.  
 

DEMO: the above code, then  
 

p.add(prompt);  
f.pack();  

3. It is also possible to create a JLabel without specifying any text, and
then specify the text later - e.g.  
 

DEMO (pause before final line)  
 

JLabel result = new JLabel()  
p.add(result);  
f.pack();  
...  
 

result.setText("The answer is 42");  
f.pack();  

E. A JTextField is a component that displays editable text on the screen.

1. In contrast to a JLabel, the text that is displayed in a JTextField can
be edited by the user. The library class provides support for normal
editing operations like placing the cursor, inserting and deleting
characters, and cut and paste. (The program can also disable user
editing and re-enable it later if desired.)

2. A JTextField is normally created by code like the following  
 

JTextField nameIn = new JTextField(10);  
 

where the integer specifies the number of characters to be displayed.
(This is not an upper limit on the number of characters that can be
typed, since the field will scroll if necessary.)  
 

DEMO: the above code, then  
 

p.add(nameIn);  
f.pack();  

�5

 

Note: it is also possible to specify the initial contents for the text field
as a String. In this case, the size does not need to be specified, since it
can be inferred from the initial contents; however, if a larger size is
desired, it can be specified explicitly as well.  
 

DEMO: 
 

JTextField addressIn = new JTextField("Address");  
p.add(addressIn);  
f.pack();  
 
JTextField cityIn = new JTextField("City", 40);  
p.add(cityIn);  
f.pack();  
 
 

(Note how all components are stretched to match width required by
widest - a consequence of the particular layout manager used.)

3. It is possible to access the current contents of a JTextField (i.e.
whatever the user has typed in it) by using its getText() method.  
 

DEMO: put some text in the field, then  
 

nameIn.getText() // No semicolon 

F. A JTextArea is a text component that has multiple lines. One form of
constructor allows specifying the size as rows and columns.  
 

DEMO: 
 

JTextArea area = new JTextArea(4, 40);  
area.setAlignmentX(0)  
p.add(area);  
f.pack();  
 

As with a JTextField, it is possible to use getText() to get the contents
of a text area. (The result will be a single long string, without newlines
dividing the lines).  
 

DEMO: Fill in the four lines, then  
 

area.getText() [no semicolon]

�6

G.A JButton is a component that a user can click to request that some
particular action occur.

1. A JButton is typically constructed as follows:  
 

JButton ok = new JButton("OK");  
 

where the string specified is the name that appears inside the button  
 

DEMO: the above code, then  
 

p.add(ok);  
f.pack();

2. When we talk about GUI events later in the lecture we will talk about
how to associate an action with a button.

H.A JComboBox is a component that a user can click to request that some
particular action occur. We will use a demonstration program based on
one created by the authors of a former textbook  
 

DEMO: ComboBoxDemo

1. Constructing a JComboBox is more complex than constructing other
types of component, because one must specify the various values to be
listed as well as creating the component, and may also specify an
initial value  
 
 

SHOW: Code that constructs the combo box  

2. Again, when we talk about GUI events later in the lecture, we will
learn how the program can respond to events generated when an value
is selected.  

�7

III.Introduction to GUI Containers

A.In the world of GUIs, a container is a special kind of component whose
basic task is to hold and position other components. (The term
"container" is used for other things in a different context)

1. Top level windows (JFrames) and applets (JApplets) have a
container called the content pane that holds their actual contents.

2. Another kind of container is a JPanel, which can be used to group
components in another container - a sort of “window within a
window”.

B. An overall GUI often consists of a container that includes other containers
for grouping the components.  
 

Example: The ATM system

1. Demo operation via link on course web site

2. Project panel structure

C. A key task of a container is to manage the layout of its components - i.e.
where each component appears on the screen, and how much screen space
is allocated to it.

1. The standard way to do this is through a special object associated with
the container called a Layout Manager. The java.awt package
includes a number of different kinds of layout managers that
implement different policies. The java.swing package defines a
couple more. Layout managers can do some very sophisticated layout
work, but they are complicated to use. We will look at some of the
rudiments of using them shortly.

2. An alternative is called absolute positioning - in which we explicitly
specify the position and size for each component.

�8

a) This is a much simpler approach in simple cases.

b) It is not, however, the recommended approach for most programs
for two reasons:

(1)Absolute positioning is somewhat dependent on details about
the underlying platform and display device used to show the
GUI, whereas the standard layout manager objects handle this
automatically. As a result, it is not uncommon to get a complex
GUI looking good on one platform, only to have text cut off or
alignments messed up on a different platform.

(2)Absolute positioning is not responsive to changes in the size of
a window resulting from resizing by the user, but the standard
layout managers handle this as well.

c) Here is a simple example of the use of absolute positioning. (We
will also use this program as a demonstration for the lecture section
on events)  
 

PROJECT: GUIEventsDemo.java

D.The latest versions of NetBeans support a free design mode, in which
NetBeans actually creates the appropriate layout managers. We will work
with this in a later lab, but for now let's do a simple demo.

1. Create a NetBeans project called Design Demo (create main class not
checked)

2. Create a Swing JFrame form

3. Add a Label: change text to This says something and name to
somethingLabel  
 

(Note that NetBeans calls this a Label, though it actually uses the class
JLabel. The same is true for other widgets)

4. Add a TextField: change text to empty and name to inputField.
Drag to make big.

�9

5. Add a Button: change text to OK and name to okButton

6. Run it.  
 
Note that it doesn't do anything yet

7. Add an event handler to the button so that it changes the label text to
"You typed" + the field contents  
 

DEMO 
 

This leads into a topic we will consider shortly: event handling. But first,
we want to spend some time discussing the use of layout managers.

IV.Layout Managers.  
 
The sophisticated way to lay out a container is to make use of a
LayoutManager. The awt package defines five kinds of layout manager;
swing defines three more general ones plus various specialized ones used by
different kinds of component.  
 
DEMO: ComponentAndLayoutDemo

A.A FlowLayout lays out a container by “flowing” components across the
width, and then going to a second row if necessary.

1. DEMO - note originally all in one line, then resize and show effect

2. A FlowLayout is specified by using one of the following  
 
container.setLayout(new FlowLayout());  
container.setLayout(new FlowLayout(align));  
container.setLayout(new FlowLayout(align, hgap, vgap));  
 
[Where align is one of FlowLayout.LEFT, FlowLayout.RIGHT,
or FlowLayout.CENTER, hgap and vgap specify spacing
between adjacent components horizontally and vertically]

�10

3. A distinctive feature of a FlowLayout is that it gives each component
exactly the amount of space it needs, and no more. It doesn’t “stretch”
components the way some other layouts do  
 
DEMO: Contrast with BorderLayout example

B. A BorderLayout lays out a container in terms of five positions,
designated North, South, East, West, and Center.

1. A BorderLayout is specified by using one of the following:  
 
container.setLayout(new BorderLayout());  
container.setLayout(new BorderLayout(hgap, vgap));

2. When a component is added to a container that uses a border layout,
special form of the add method is used, in which the second parameter
is one of BorderLayout.NORTH, BorderLayout.EAST,
BorderLayout.SOUTH, BorderLayout.WEST or
BorderLayout.CENTER.. 
 
Example: Show code for adding components to BorderLayout
version of demo

3. A consequence of this is that a container that uses a BorderLayout
may directly show only five components - though any of these may be
a Panel that itself contains several components.

4. A BorderLayout “stretches” individual components - e.g. the North
and South components are stretched to match the bigger of the North,
South, or combined width of the West, Center, and East; the West,
Center and East components are stretched to match the height of the
biggest of the three.  
 
NOTE in demo; demo resizing

�11

C. A GridLayout lays out components on a grid, whose size is specified
when the layout is constructed.

1. A GridLayout is specified by using one of the following::  
 

container.setLayout(new GridLayout(rows, cols));  
container.setLayout(new GridLayout(rows,cols,hgap,vgap));  
 

[Either rows or cols - but not both - can be zero - which means “use as
many as are needed”. The gaps specify the amount of space allowed
between adjacent cells.]

2. When components are added to the container, they are placed in cells
by filling the first row, then the second, then the third ...

3. All the grid cells will be of the same size, determined by the component
with the greatest width and the component with the greatest height. All
other components will be “stretched” to fill their cell  
 

NOTE IN DEMO; demo resizing

D.A BoxLayout can be used to lay out components in either a single vertical
or horizontal line. It is similar to FlowLayout, except that the
components remain in a single line when it is resized.

1. A BoxLayout is specified by using: 
 

BoxLayout layout = new BoxLayout(container, axis);  
...  
container.setLayout(layout);  
 

[where the axis is typically either BoxLayout.X_AXIS or
BoxLayout.Y_AXIS]

2. When components are added to the container, they are placed left to
right or top to bottom in the order in which they are added.  
 
DEMO, including resizing  

�12

E. The most sophisticated layout manager by far is the GridBagLayout.

1. Like the GridLayout, the GridBagLayout lays out components in
cells on a grid. However, each row in the grid can have a different
height, and each column a different width - as determined by the
highest or widest component in any given row/column.

2. Each component added to a container that uses this LayoutManager
has a constraints object that specifies things like which cell (or cells) it
goes in; whether it is to be stretched horizontally or vertically to fill its
cell; where it is positioned in its cell (corner, side, center) if it is
smaller than the cell, etc.

3. We won't discuss the details of using this class - but it is instructive to
look at the example.  
 
DEMO, including resizing

4. Netbeans provides good support for using this kind of layout as well.

F. A CardLayout shows just one component at a time.

1. A CardLayout is specified by using one of the following  
 

CardLayout layout = new CardLayout());  
CardLayout layout = new CardLayout(hgap, vgap));  
...  
container.setLayout(layout);  
 

[where the gaps specify space around each component]

2. Components are added to the container using a form of the add method
in which the second parameter is a String giving a name to the
component.

�13

3. The layout object itself supports methods that allow the program to
specify which component is to be shown:  
 

first(container);  
last(container);  
previous(container);  
next(container);  
show(container, name);  
 
SHOW: while loop in demo program that shows a different card every
five seconds

G.Panels.

1. Sometimes, in constructing a GUI, it is desirable to group several
components into a single entity for layout. There are several reasons
why this might be the case

a) We want to ensure that they stay together, even if the overall
window in which they appear is resized

b) We want to use a different layout for positioning them relative to
one another than is used for the overall layout

c) We want to protect a component from being “stretched” by a layout
manager.

2. For such purposes, we can make use of a kind of container known as a
JPanel. A JPanel is a container that has its own layout, but can be
placed in another layout.

3. An example JPanelDemo.

�14

V. Event-Driven Programming with GUIs

A.We said at the outset that GUI’s perform two basic tasks: displaying information
and responding to user input. We now turn to the handling of the second task.

B. Any windowing operating system has a software component that responds to
changes in the position of the mouse, pressing or releasing the mouse’s
button(s), and pressing of keys. Each such action by the user constitutes an
event, which this component of the OS delivers to the appropriate application
(namely the application that owns the window that the cursor is over when the
event occurs.) At this point, further processing of the event is up to the
application.  
 

DEMO: GUIEventsDemo  
 

PROJECT code

1. In the case of Java, the Java awt provides a standard mechanism for
handling events that any program can build on.

a) This is used by both Swing and awt (since Swing ultimately is built
on top of awt)

b) To use the event handling mechanism, a program must import the
package java.awt.event.

2. SHOW in projected code

3. When a Java program receives an event, the Java library delivers it to
the appropriate GUI component - e.g. to the JButton object if the
mouse is over a button; to the JTextField object if the mouse is over
a text field, etc.

a) A given type of component may handle certain types of events on
its own - e.g. a key pressed event that is delivered to a text field
object causes the character that was typed to be inserted in the text
at the appropriate point.

�15

b) User-written software may also express an interest in handling a
particular type of event by registering an event listener with the
component. When an event listener is registered, and the
appropriate type of event occurs, the event listener is activated to
responds to it.  
 
Events that the component is not interested in and that have no
registered listeners are simply ignored. For example, every mouse
movement results in an event, but the vast majority of them are
ignored. (One could register an interest in mouse movements,
however, if one wanted to highlight some component on the screen
when the mouse was moved over it.)

c) Java has its system for classifying types of events. We talk
primarily about one type, but will mention a couple of others as
well.

(1)An ActionEvent is created whenever a user does something
that typically calls for an active response from the program - e.g.

(a)Clicks a button

(b)Presses return while typing in a text field

(c)Chooses a selection in a combo box

(d)Chooses a menu item  
 

etc.

(2)A KeyEvent is created whenever a user presses a keyboard key.

(3)A ChangeEvent is created whenever a user changes the value of
a slider.

�16

(4)A MouseEvent is created for various mouse actions - pressing,
releasing, clicking, moving, dragging, entering or leaving a
component. (The various methods of WindowController in
object draw such as onMousePress() provide a simplified way of
working with these)

C. To register an event listener with a component, one uses a listener object
that implements the appropriate interface. In the case of an
ActionEvent, a listener object must

1. Be declared as implementing ActionListener. ActionListener is
an interface in Java - a specification for behavior that all objects that
implement the interface must have. In this case, the necessary
behavior is having an actionPerformed() method that handles an
action event in an appropriate way.  

2. Have a method with the following signature:  
 

public void actionPerformed(ActionEvent e)  

3. Be registered with the component. This is done by some code
(typically the constructor for the GUI) sending an
addActionListener message to the component, passing as a
parameter the listener object.  
 
SHOW each of the above in projected code.  
 
Note that the program only deals with ActionEvents; the JTextField
object handles KeyEvents without the program having to deal with
them.

D.When an event occurs for which there is an appropriately registered
listener, a suitable method of the listener is called. In the case of an
ActionEvent, this is the actionPerformed() method of the listener
object. The actual event is represented as an object that is passed as a
parameter to this method. (The event object contains information that
varies from type of event to type of event, but typically includes the

�17

precise coordinates where the cursor was when the event occurred, details
about any modifier keys that were pressed, etc.) The
actionPerformed() method is responsible for doing what needs to be
done to respond to the event.

1. SHOW code for actionPerformed() in GUIEventsDemo

2. If we also wanted the user to be able to initiate computation by
clicking return after typing in the text input box, we could add the
following code to the constructor, making the applet be a listener for
action events emanating from either the text field or the button.  
 
numberInput.addActionListener(this);  
 
In this case, an action event emanating from either component would
activate the applet’s actionPerformed() method. If the applet
needed to know which component was the source of the event, it could
find out by examining the ActionEvent object passed as a parameter.
In this case, though, it doesn't - we need to do exactly the same thing in
either case.  
 
DEMO: Show before nothing happens when we press return in input
field; add line at end of main method:  
 

numberInput.addActionListener(this);  
 
show changed behavior when pressing return

3. Note how the action listener reads the number typed by the user as a
string and then uses the “wrapper class” approach to convert it to a
number that can be used in computation. It is instructive to see what
happens when a “bad” value is typed.  
 
DEMO: with -1 as input 
 
DEMO with abc as input

�18

E. We can now summarize how a GUI program deals events

1. The main / initialization code of such a program typically sets up the
graphical user interface and then terminates. This includes creating the
needed components and - if appropriate - registering event handlers for
them.  
 
Example: PROJECT initComponents() method in GUI class for
Video Store project (automatically generated by NetBeans)  
 
All further computation takes place as the result of user gestures on
various components.

2. A user gesture on a particular component results in the creation of an
event object. The component that creates the object is called its
source.  
 
EXAMPLE: When one chooses one of the menu items, an ActionEvent
object is created. The item that was clicked on is the source of the
event.

3. When an event occurs, the the appropriate registered listener method
of the source object is called. (If there is no such method, the event is
ignored)  
 
EXAMPLE: When the user chooses a menu item, the
actionPerformed() method of the registered ActionListener is
called.

F. One interesting question that arises is how events are handled when a
given program has more than one event source.

1. One option is to have a single listener object that handles all events. In
this case, it must check to see which source the event the comes from
before deciding what to do with it. We can use the getSource() method
of the event object, and then compare it to known sources.  

�19

 
DEMO MultipleEvents1.java  
 

PROJECT Code 
 

Note that the JButtons have to be instance variables, because they are
needed both by the constructor and by the action listener (which has to
compare the event source to each of them)

2. An alternate approach - and a better one when there are many event
sources - is to use a different listener object for each event source.
One way to do this is with anonymous classes, each created at the
place where it is needed  
 

DEMO MultipleEvents2.java  
 

PROJECT Code 

a) Note that we are creating three different listener classes - one for
each button - with one instance of each. Each actionPerformed
method sets the frame to the appropriate color. This results in the
compilation producing a total of four class files  
 

SHOW names of files in directory

b) Note that the classes we are creating are local - they are declared
inside a method (just like local variables are).

c) Note that these classes we are creating are anonymous. Since each
class is used to create exactly one object, and class declaration and
object creation are done in the same statement, the class does not
need a name.

d) There are a number of specialized rules that apply to anonymous
local classes, which we won’t go into here, except for noting one
obvious point: since they are anonymous, they cannot have a
constructor!

�20

e) Note also the formatting convention used for declarations of
anonymous classes: 
 

new <base class or interface> () {  
 

final line of declaration has closing } followed immediately by
whatever punctuation is needed to close the statement in which the
new occurred (here “);”).

f) When using the Netbeans facility for adding Events to objects, the
IDE takes care of all this  
 
DEMO - Free Design Demo Project - add a new button called
"Clear" that that clears the text in the label. (Specify text as " " to
avoid repacking the frame).  
 
SHOW generated code for adding ActionListener

G.IF TIME Mouse events are a particularly interesting kind of event, so it is
worth spending a bit more time on them.  
 

DEMO MouseEvents.java 
 

PROJECT code

1. Note use of an anonymous class to extend JComponent to paint the
Cheese.

2. Note two types of listeners needed - one for MouseEvents, one for
MouseMotionEvents

3. Note how clicks are handled

4. Note how multiple clicks are handled

H.We have introduced event-driven programming in the context of GUIs,
but the event-driven approach is also used in many other places - e.g.
embedded control systems.

�21

VI.Menus

A.Contemporary Graphical User interfaces are sometimes called “WIMP”
interfaces - which is not a commentary on the people who use them!
WIMP stands for “Windows, Icons, Menus, and Pointing Devices”. We
have already discussed windows and the things displayed in them in
detail, and pointing devices implicitly through our discussion of the
events that various uses of the mouse can trigger (not just MouseEvents,
but also events such as ActionEvents that are triggered by mouse actions
such as clicking.) Icons are largely an issue for the operating system to
deal with, not individual applications.

B. The final aspect of GUI’s that we need to discuss is Menus. Swing
actually allows a program to have two different kinds of menus (though
rarely would a single program have both, except for demo purposes)

1. “awt” menus, that follow the conventions of the native platform (e.g.
on the Mac, an awt menu appears at the top of the screen)

2. “swing” menus that follow the conventions of swing (always at the top
of the window)

C. Either way, the basic approach is the same

1. We create a menu bar object - class MenuBar or JMenuBar

2. We create menus - class Menu or JMenu. - and add each to the menu
bar

3. We create menu items - class MenuItem or JMenuItem - and add each
to its menu.

4. We add an action listener to each menu item  
 

DEMO MenuOptionsDemo  
 

PROJECT code

�22

a) Note that MenuItems can have ActionListeners just like buttons.
Note that, in this case, they have been implemented as anonymous
local classes, with each actionPerformed method calling an
appropriate method of the main object.

b) The use of two different kinds of menubars in a single program is
not at all good practice. It is only done here for demonstration
purposes!

�23

